Issue 7, 2011

Minimum-step immuno-analysis based on continuous recycling of the capture antibody

Abstract

Most immuno-analytical systems employ antibodies that do not readily dissociate upon binding to its partner antigen (i.e., target analyte; α2-macroglobulin as a model) and, thus, either need to be disposed of after one-time use or be reused after binding has been reset. To achieve a minimum-step analysis, an antibody that is capable of rapidly reversible binding with high affinity to an antigen was investigated in this study. This antibody was immobilized on the surface of a label-free sensor, which was combined with microfluidic channels, to demonstrate its applicability. The antibody was successively reused without a regeneration step under physiological conditions, offered specific analysis in the serum medium, and detected the analyte at concentrations as low as 0.1 ng mL−1, which could further be enhanced by 100-fold. The sensor response reached 95% equilibrium after 8.3 and 14.9 min in average on each dose level for the concentration increase and decrease, respectively. The dynamic range covered a 5 logarithmic analyte concentration. Since the sampling size was in the nanolitre to millilitre range per day under the conditions used and the sensor may retain a long shelf-life, it could potentially be used in a clinical setting for long-term, on-line monitoring of diseases.

Graphical abstract: Minimum-step immuno-analysis based on continuous recycling of the capture antibody

Article information

Article type
Paper
Submitted
21 Oct 2010
Accepted
13 Jan 2011
First published
25 Feb 2011

Analyst, 2011,136, 1374-1379

Minimum-step immuno-analysis based on continuous recycling of the capture antibody

H. Cho, S. Seo, I. Cho, S. Paek, D. Kim and S. Paek, Analyst, 2011, 136, 1374 DOI: 10.1039/C0AN00811G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements