Issue 32, 2011

Polyoxoniobate chemistry in the 21st century

Abstract

Polyoxometalate (POM) chemistry of W, Mo and V is rich and diverse; and new discoveries are frequent and abundant. The prolificacy of this POM chemistry is attributed to rich redox chemistry, an acidic nature that is compatible with addendum metal cations, and most importantly an understanding and ability to control solution behavior. In contrast, the POM chemistry of Nb and Ta (PONb, POTa) is hindered by minimal redox chemistry, alkalinity that is incompatible with the solubility of most metal cations, and a relatively poor understanding of the behavior in aqueous media. Despite these hurdles, considerable advancements in PONb chemistry (and to a much lesser extent POTa chemistry) have been made in the last decade. These include synthesis of the first heteropolyniobate Keggin derivatives, utilization of organic countercations to obtain unprecedented PONb geometries and compositions, and investigation of PONb solution behavior using advanced techniques such as nuclear magnetic resonance (NMR), electrospray ionization mass spectrometry (ESI MS) and small-angle X-ray scattering (SAXS). This Perspective article summarizes the recent successes, continued shortcomings, and some unique and potentially exploitable features of PONb chemistry. More importantly, this annotated compilation of recent PONb literature has revealed the most logical and promising directions for the continued growth of the most challenging of polyoxometalate chemistries.

Graphical abstract: Polyoxoniobate chemistry in the 21st century

Article information

Article type
Perspective
Submitted
15 Mar 2011
Accepted
26 Apr 2011
First published
13 Jun 2011

Dalton Trans., 2011,40, 8049-8058

Polyoxoniobate chemistry in the 21st century

M. Nyman, Dalton Trans., 2011, 40, 8049 DOI: 10.1039/C1DT10435G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements