Issue 9, 2011

Selective aerobic oxidation of para-xylene in sub- and supercritical water. Part 2. The discovery of better catalysts

Abstract

An extensive and systematic study has been carried out on the catalytic effect of more than 20 elements on the aerobic oxidation of p-xylene to terephthalic acid in super- and subcritical water. Reactions have been performed in a continuous reactor under catalyst unsaturated conditions. Reaction product, by-products and intermediates have been quantified as well as the burn (the amount of CO2 originating from total oxidation of p-xylene). CuBr2 has been found to be a superior catalyst to MnBr2, which has been widely used in the literature for this reaction in water at high temperatures. At catalyst unsaturated conditions (i.e. with low concentrations of catalyst), MnBr2 gives a terephthalic acid yield of 36.1% whereas CuBr2 enhances this value to 55.6%. A strong synergistic effect has been found between CuBr2 and other metals and sources of bromide. Indeed, we show that Cu/Co/Br, Cu/Co/NH4/Br and other mixtures give better results than CuBr2 reaching a terephthalic acid yield of 70.5% for the four component catalyst. The compositions of the catalyst as well as the reactor temperature have been optimized and their effects on the analyzed compounds are discussed. A substantial amount of additional data is included in the electronic supplementary information.

Graphical abstract: Selective aerobic oxidation of para-xylene in sub- and supercritical water. Part 2. The discovery of better catalysts

Supplementary files

Article information

Article type
Paper
Submitted
03 Feb 2011
Accepted
18 May 2011
First published
21 Jul 2011

Green Chem., 2011,13, 2397-2407

Selective aerobic oxidation of para-xylene in sub- and supercritical water. Part 2. The discovery of better catalysts

E. Pérez, J. Fraga-Dubreuil, E. García-Verdugo, P. A. Hamley, M. L. Thomas, C. Yan, W. B. Thomas, D. Housley, W. Partenheimer and M. Poliakoff, Green Chem., 2011, 13, 2397 DOI: 10.1039/C1GC15138J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements