Issue 7, 2011

RAFT-synthesized copolymers and conjugates designed for therapeutic delivery of siRNA

Abstract

The advent of controlled radical polymerization (CRP) techniques, along with advancements in facile conjugation chemistry, now allow synthetic tailoring of precise, polymeric architectures necessary for drug/gene delivery. Reversible addition–fragmentation chain transfer (RAFT) polymerization and its aqueous counterpart (aRAFT) afford quantitative control over key synthetic parameters including block length, microstructure, and placement of structo-pendent and structo-terminal functionality for conjugation of active agents and targeting moieties. The relevance of water-soluble and amphiphilic (co)polymers synthesized by RAFT for in vivo delivery of therapeutics in biological fluids is an especially attractive feature. In many cases, polymerization, binding, conjugation, and stimulus-induced release can be accomplished directly in aqueous media. This review focuses on RAFT synthesized (co)polymers as vectors for delivery of small interfering ribonucleic acid (siRNA) and gene down-regulation via the RNA interference (RNAi) pathway. Synthetic strategies utilizing RAFT and facile side- and end-chain reaction chemistries to afford modular delivery architectures (linear, stars/hyperbranched, micelles, and hybrid (co)polymeric vehicles) are reviewed based on examples from current literature. Also, specific problems, barriers, and challenges regarding rational design of polymeric delivery systems for therapeutic siRNA are presented.

Graphical abstract: RAFT-synthesized copolymers and conjugates designed for therapeutic delivery of siRNA

Article information

Article type
Review Article
Submitted
21 Jan 2011
Accepted
24 Feb 2011
First published
25 Mar 2011

Polym. Chem., 2011,2, 1428-1441

RAFT-synthesized copolymers and conjugates designed for therapeutic delivery of siRNA

D. Smith, A. C. Holley and C. L. McCormick, Polym. Chem., 2011, 2, 1428 DOI: 10.1039/C1PY00038A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements