Issue 12, 2012

Controllable hydrothermal synthesis of manganese dioxide nanostructures: shape evolution, growth mechanism and electrochemical properties

Abstract

In this work, four well-defined morphologies, including nanorod, nanowire, nanoflower and nanowall, of MnO2 nanostructures with different crystal phases (α-, β-, and δ-MnO2) have been synthesized employing a simple hydrothermal process. The samples are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), and Brunauer–Emmett–Teller (BET) spectrometry. Our experimental results demonstrate that the concentration of KMnO4 plays a key role in forming different shapes and phases of MnO2 nanostructures. Specifically, the K+ concentration can affect the crystal phase of MnO2 seeds in the nucleation processes and the decomposition rate of MnO4 can influence the number of MnO2 nuclei at the initial nucleating stage and also can affect the subsequent crystal growth process. Moreover, the effects of reaction temperature on the morphology of the δ-MnO2 nanowall are systematically studied. The electrochemical performances of the as-prepared MnO2 as the positive material of rechargeable Li-ion batteries have also been researched. It is found that the δ-MnO2 nanowall possesses largely enhanced electrochemical activity compared to α-MnO2 nanowires and β-MnO2 nanorods. The vast difference in electrochemical activity is discussed in terms of the morphology, crystal phase and specific surface area of MnO2 nanostructures. It is highly expected that these findings are useful in understanding the formation of MnO2 nanocrystals with different morphologies, which are also applicable to other metal oxides nanocrystals.

Graphical abstract: Controllable hydrothermal synthesis of manganese dioxide nanostructures: shape evolution, growth mechanism and electrochemical properties

Supplementary files

Article information

Article type
Paper
Submitted
25 Nov 2011
Accepted
26 Mar 2012
First published
27 Apr 2012

CrystEngComm, 2012,14, 4196-4204

Controllable hydrothermal synthesis of manganese dioxide nanostructures: shape evolution, growth mechanism and electrochemical properties

X. Duan, J. Yang, H. Gao, J. Ma, L. Jiao and W. Zheng, CrystEngComm, 2012, 14, 4196 DOI: 10.1039/C2CE06587H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements