Issue 9, 2012

Polyethylene end functionalization using thia-Michael addition chemistry

Abstract

Thiol end functionalized polyethylenes (PE-SH, Mn around 1000 g mol−1, Đ < 1.3) were used as nucleophiles in thia-Michael additions with different acrylic molecules. It was found that under commonly used practical conditions the addition to methacrylates was very difficult, whereas addition to acrylates was very efficient. First, block copolymers based on PE and poly(methyl methacrylate) (PMMA) were targeted by reaction of PE-SH with PMMA obtained by catalytic chain transfer polymerization (CCTP). The reaction however failed and detailed model experiments using butanethiol and a dimer of MMA showed that the solubilization temperature of PE-SH was an impediment to the success of the reaction. The lack of reactivity towards PMMA obtained by CCTP and methacrylate functions was advantageously used to react molecules containing both an acrylate and a methacrylate group in the presence of tributyl phosphine (PBu3) to produce methacrylate-type PE macromonomers. The presence of a hydroxyl function on 3-(acryloyloxy)-2-hydroxypropyl methacrylate induced side trans-esterification reactions catalyzed by PBu3. This was overcome by using the hydroxyl free 2-(acryloyloxy) ethyl methacrylate. With the latter, the desired PE macromonomer exhibited a functionality as high as 85%. Alternatively, 2-isocyanatoethyl methacrylate could also be reacted with PE-SH to produce a highly functionalized methacrylate type PE macromonomer (functionality 89%). Eventually, the efficiency of the thia-Michael addition of PE-SH onto poly(ethylene glycol) acrylate (PEG-acrylate) was used to synthesize the PE-b-PEG block copolymer.

Graphical abstract: Polyethylene end functionalization using thia-Michael addition chemistry

Article information

Article type
Paper
Submitted
06 Apr 2012
Accepted
10 May 2012
First published
11 May 2012

Polym. Chem., 2012,3, 2383-2392

Polyethylene end functionalization using thia-Michael addition chemistry

J. Mazzolini, O. Boyron, V. Monteil, F. D’Agosto, C. Boisson, G. C. Sanders, J. P. A. Heuts, R. Duchateau, D. Gigmes and D. Bertin, Polym. Chem., 2012, 3, 2383 DOI: 10.1039/C2PY20199B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements