Issue 12, 2013

Full-field XANES analysis of Roman ceramics to estimate firing conditions—A novel probe to study hierarchical heterogeneous materials

Abstract

Roman black gloss ceramics from two different locations and separated by 50–80 years were investigated by X-ray absorption near edge structure analysis in full field hard X-ray transmission microscopes. These spectro-microscopy measurements were complemented by Raman spectroscopy, and X-ray diffraction spot analyses to gain insights into possible differences in manufacturing technology. Our results indicate that the two vessels underwent significantly different firing protocols, suggesting that there was a surprisingly quick evolution of a complex technological process in response to changing needs and tastes of a burgeoning empire. Furthermore, our results show that the ability of the full field X-ray spectro-microscope to investigate large sample areas (from hundreds of µm2 to as much as 2 mm2) with high spatial resolution (of 300 nm down to 30 nm) together with its ability to correlate sample porosity (derived from tomography) with the distribution of chemical phases makes it an invaluable tool in the investigation of nanoscale processes in hierarchically heterogeneous chemical systems—from Roman ceramics to some of the most advanced technological products of today.

Graphical abstract: Full-field XANES analysis of Roman ceramics to estimate firing conditions—A novel probe to study hierarchical heterogeneous materials

Article information

Article type
Paper
Submitted
09 Jul 2013
Accepted
25 Sep 2013
First published
26 Sep 2013

J. Anal. At. Spectrom., 2013,28, 1870-1883

Full-field XANES analysis of Roman ceramics to estimate firing conditions—A novel probe to study hierarchical heterogeneous materials

F. Meirer, Y. Liu, E. Pouyet, B. Fayard, M. Cotte, C. Sanchez, J. C. Andrews, A. Mehta and P. Sciau, J. Anal. At. Spectrom., 2013, 28, 1870 DOI: 10.1039/C3JA50226K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements