Issue 5, 2025

A CNN-based self-supervised learning framework for small-sample near-infrared spectroscopy classification

Abstract

Near-infrared (NIR) spectroscopy, with its advantages of non-destructive analysis, simple operation, and fast detection speed, has been widely applied in various fields. However, the effectiveness of current spectral analysis techniques still relies on complex preprocessing and feature selection of spectral data. While data-driven deep learning can automatically extract features from raw spectral data, it typically requires large amounts of labeled data for training, limiting its application in spectral analysis. To address this issue, we propose a self-supervised learning (SSL) framework based on convolutional neural networks (CNN) to enhance spectral analysis performance with small sample sizes. The method comprises two learning stages: pre-training and fine-tuning. In the pre-training stage, a large amount of pseudo-labeled data is used to learn intrinsic spectral features, followed by fine-tuning with a smaller set of labeled data to complete the final model training. Applied to our own collected dataset of three tea varieties, the proposed model achieved a classification accuracy of 99.12%. Additionally, experiments on three public datasets demonstrated that the SSL model significantly outperforms traditional machine learning methods, achieving accuracies of 97.83%, 98.14%, and 99.89%, respectively. Comparative experiments further confirmed the effectiveness of the pre-training stage, with the highest accuracy improvement, reaching 10.41%. These results highlight the potential of the proposed method for handling small sample spectral data, providing a viable solution for improved spectral analysis.

Graphical abstract: A CNN-based self-supervised learning framework for small-sample near-infrared spectroscopy classification

Article information

Article type
Paper
Submitted
29 Oct 2024
Accepted
06 Jan 2025
First published
13 Jan 2025

Anal. Methods, 2025,17, 1090-1100

A CNN-based self-supervised learning framework for small-sample near-infrared spectroscopy classification

R. Zhao, W. Li, J. Xu, L. Chen, X. Wei and X. Kong, Anal. Methods, 2025, 17, 1090 DOI: 10.1039/D4AY01970A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements