Polysulfide chemistry in metal–sulfur batteries

Abstract

Renowned for their high theoretical energy density and cost-effectiveness, metal–sulfur (M–S) batteries are pivotal in overcoming the current energy storage bottlenecks and accelerating the transition toward a cleaner society. Polysulfides (PSs) serve as essential intermediates in M–S batteries and bridge the electrochemical redox processes of sulfur, playing a decisive role in controlling the electrode behaviors and regulating the battery performances. Understanding PS chemistry across diverse battery environments is key to advancing M–S batteries. This review aims to provide a comprehensive overview of the PS chemistry in high-energy-density battery systems and outline future research directions. The compositions, properties, and characterization methods of PSs are introduced to facilitate a fundamental understanding of the PS chemistry in working batteries. Following this, a thorough examination of the chemical and electrochemical behaviors of PSs and their impacts on electrode performances is conducted to deepen the insights into the PS reactions in batteries. Building on this foundation, representative PS regulation strategies are discussed, focusing on molecular modification, solvation optimization, and interfacial regulation, to achieve superior M–S battery performances. Challenges of PSs in practical M–S batteries are finally analyzed, and perspectives on the future research trends of PS chemistry are presented.

Graphical abstract: Polysulfide chemistry in metal–sulfur batteries

Article information

Article type
Review Article
Submitted
13 Jan 2025
First published
01 Apr 2025

Chem. Soc. Rev., 2025, Advance Article

Polysulfide chemistry in metal–sulfur batteries

X. Li, M. Zhao, Y. Song, C. Bi, Z. Li, Z. Chen, X. Zhang, B. Li and J. Huang, Chem. Soc. Rev., 2025, Advance Article , DOI: 10.1039/D4CS00318G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements