Chiral nanographenes exhibiting circularly polarized luminescence

Abstract

Chiral nanographenes constitute an unconventional material class that deviates from planar graphene cutouts. They have gained considerable attention for their ability to exhibit circularly polarized luminescence (CPL), which offers new opportunities in chiral optoelectronics. Their unique π-conjugated architectures, coupled with the ability to introduce chirality at the molecular level, have made them powerful contenders in developing next-generation optoelectronic devices. This review thoroughly explores recent advances in the synthesis, structural design, and CPL performance of chiral nanographenes. We delve into diverse strategies for inducing chirality, including covalent functionalization, helically twisted frameworks, and heteroatom doping, each of which unlocks distinct CPL behaviors. In addition, we discuss the mechanistic principles governing CPL and future directions in chiral nanographenes to achieve high dissymmetry factors (glum) and tunable emission properties. We also discuss the key challenges in this evolving field, including designing robust chiral frameworks, optimizing CPL efficiency, and scaling up real-world applications. Through this review, we aim to shed light on recent developments in the bottom-up synthesis of structurally precise chiral nanographenes and evaluate their impact on the growing domain of circularly polarized luminescent materials.

Graphical abstract: Chiral nanographenes exhibiting circularly polarized luminescence

Article information

Article type
Review Article
Submitted
30 Jan 2025
First published
10 Apr 2025
This article is Open Access
Creative Commons BY-NC license

Chem. Soc. Rev., 2025, Advance Article

Chiral nanographenes exhibiting circularly polarized luminescence

V. Kumar, J. L. Páez, S. Míguez-Lago, J. M. Cuerva, C. M. Cruz and A. G. Campaña, Chem. Soc. Rev., 2025, Advance Article , DOI: 10.1039/D4CS00745J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements