Issue 22, 2024

Mechanistic insights into EGCG's preventive effects on obesity-induced precocious puberty through multi-omics analyses

Abstract

Epigallocatechin gallate (EGCG) has demonstrated potential effects on obesity-induced precocious puberty, but the underlying mechanisms remain unclear. Female mice were randomly assigned into control (CON), EGCG-treated (EGCG), high-fat diet (HFD), and HFD with EGCG treatment (HFDEGCG) groups. Key measurements included body weight, vaginal opening time, and serum sex hormone levels. The gut microbiota was analyzed through 16S rRNA sequencing, fecal metabolites were assessed via metabolomics, and the hypothalamic transcriptome was examined using RNA sequencing. EGCG mitigated weight gain and delayed vaginal opening in mice with obesity-induced precocious puberty. Additionally, it reduced serum estradiol levels and decreased the number of mature ovarian follicles in the HFDEGCG group compared to the HFD group. EGCG treatment partially reversed HFD-induced dysbiosis by increasing the abundance of beneficial bacteria such as Akkermansia. Metabolomic analysis revealed significant alterations in tryptophan metabolism, while transcriptome analysis identified genes involved in metabolic pathways. Correlation analyses underscored the importance of the gut–brain axis in mediating EGCG's effects. Overall, EGCG prevents obesity-induced precocious puberty by modulating the gut microbiota, altering metabolic pathways, and regulating hypothalamic gene expression.

Graphical abstract: Mechanistic insights into EGCG's preventive effects on obesity-induced precocious puberty through multi-omics analyses

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
11 Aug 2024
Accepted
09 Oct 2024
First published
24 Oct 2024

Food Funct., 2024,15, 11169-11185

Mechanistic insights into EGCG's preventive effects on obesity-induced precocious puberty through multi-omics analyses

Q. Gu, Q. Du, L. Xia, X. Lu, X. Wan, Y. Shao, J. He and P. Wu, Food Funct., 2024, 15, 11169 DOI: 10.1039/D4FO03844D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements