Identification, targeted separation, and in vivo and in vitro anti-vascular endothelial injury abilities of bioactive compounds from Acanthopanax senticosus†
Abstract
Acanthopanax senticosus (Rupr. et Maxim.) Harms, a traditional medicinal and edible crop cultivated in China, exhibits extensive biological activities. In the present research, a screening and targeted isolation method using affinity ultrafiltration-UPLC-MS with GNPS (AUF-LC-MS-GNPS) methods was established and used to further verify the protective effect and potential mechanism of monomers on a vascular endothelial injury model. By utilizing the AUF-LC-MS-GNPS strategy, 9 potential active monomers were target isolated and 22 other compounds were obtained from Acanthopanax senticosus. The anti-endothelial injury activity of the monomers was further verified through in vitro cell experiments, which showed that the 9 monomers had protective effects on HUVECs damaged by oxidized low-density lipoprotein (ox-LDL), and could increase the levels of endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor A (VEGFA) while reducing the level of endothelin (ET)-1. Furthermore, an in vivo zebrafish experiment against lipopolysaccharide (LPS) damage proved the protective effects of the isolated monomers. Our research established a bioactive screening and targeted separation method by comprehensively utilizing an AUF, LC-MS and GNPS network. Concurrently, Acanthopanax senticosus may be a natural source of bioactive components, as well as possessing anti-endothelial injury activity.