Issue 8, 2025

Lycopene improves cisplatin induced hepatointestinal injury in rats by modulating the microbe–gut–liver axis

Abstract

Cisplatin (CIS) is a commonly used antitumor drug in clinics, but its application is limited due to hepatotoxicity, nephrotoxicity and gastrointestinal toxicity. In recent years, a large number of studies have shown that the imbalance of intestinal flora is one of the important factors in the malignant development of diseases. Therefore, improving organ function by regulating intestinal flora may be an important strategy to prevent the side effects of chemotherapy drugs. Lycopene (LYC) is found in a wide range of red foods and has antioxidant, anti-inflammatory and immune-enhancing effects. So the purpose of this study was to explore its effect on hepatointestinal injury caused by chemotherapy drugs. The results of this study showed that CIS could significantly restore body weight, diet, water intake, and AST, ALT and other physiological and biochemical indexes of rats. HE staining, projective electron microscopy and TUNEL results showed that LYC alleviated morphological and ultrastructural damage of the liver and intestine. Then, ELISA results showed that LYC can reduce cell apoptosis by increasing the antioxidant capacity and reducing inflammatory response. Secondly, 16sRNA and metabolome results showed that LYC enriched beneficial bacteria (Firmicutes and Proteobacteria), reduced harmful bacteria (E. coli, etc.), enhanced metabolic pathway changes such as taurine and hypotaurine metabolism, and alleviated organ damage caused by CIS. Finally, network pharmacology, molecular docking and immunohistochemistry showed that LYC could reduce CIS induced hepatocyte inflammation and apoptosis by activating the PI3K/AKT pathway. In summary, LYC alleviates the toxic side effects of chemotherapy drugs by regulating the PI3K/AKT pathway and the intestinal microbiota–metabolite–liver axis.

Graphical abstract: Lycopene improves cisplatin induced hepatointestinal injury in rats by modulating the microbe–gut–liver axis

Supplementary files

Article information

Article type
Paper
Submitted
06 Dec 2024
Accepted
15 Feb 2025
First published
27 Mar 2025

Food Funct., 2025,16, 3064-3074

Lycopene improves cisplatin induced hepatointestinal injury in rats by modulating the microbe–gut–liver axis

E. Xu, Z. Yu and J. Zheng, Food Funct., 2025, 16, 3064 DOI: 10.1039/D4FO06059H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements