Enhanced corrosion resistance of an eco-friendly MXene composite coating with self-healing performance

Abstract

Though various kinds of self-healing composite coatings have been proposed for long-term corrosion protection of metals toward sustainable development, the construction of highly efficient and thin coatings via an eco-friendly and time-saving process still remains a challenge. Herein, by combining MXene with strong impermeability and tannic acid as a green corrosion inhibitor, a calcium myristate/MXene composite coating was designed for Al alloys. The resultant thin composite coating (∼21.59 μm) exhibited high corrosion resistance, with a decreased corrosion current density of 7.028 × 10−9 A cm−2 in a 3.5 wt% NaCl solution, as confirmed by electrochemical tests, surpassing the performances of calcium myristate and calcium myristate/MXene coatings without tannic acid. The self-healing capability was evaluated by electrochemical tests and the evolution of surface morphology of the scratched coating. The damaged MXene composite coating presented self-healing behavior, with a high self-healing efficiency of 99.53% after 8 days. The self-healing mechanism was attributed to the release of tannic acid from the damaged areas. In contrast to the complex functionalization and preparation process of organic coatings, the comprehensive advantages of this MXene composite coating outperformed those of previously reported self-healing MXene coatings. This work provides a facile strategy for constructing self-healing MXene coatings and expands the application potential of MXene.

Graphical abstract: Enhanced corrosion resistance of an eco-friendly MXene composite coating with self-healing performance

Supplementary files

Article information

Article type
Paper
Submitted
08 Dec 2024
Accepted
18 Mar 2025
First published
20 Mar 2025

Green Chem., 2025, Advance Article

Enhanced corrosion resistance of an eco-friendly MXene composite coating with self-healing performance

X. Ma, T. Wang, B. Gong, J. Hou, S. Ji and H. Cao, Green Chem., 2025, Advance Article , DOI: 10.1039/D4GC06219A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements