The preparation of flame-retardant materials with complex shapes based on a dual-modulus network strategy

Abstract

Flame-retardant thermosetting polymers are extensively used in construction materials and aerospace applications due to their inherent stability and performance characteristics. Traditional processing methods, however, are limited to producing simple geometries such as strips, blocks, and plates. Additionally, small molecule flame retardants exist in the resin matrix in a free form, and as the resin is used over time, these small molecule flame retardants tend to migrate, which deteriorates the flame-retardant performance of the material. Herein, we synthesized a flame retardant containing P and N elements with a double bond, which also serves as a curing agent, through molecular design and applied it in an acrylate–epoxy resin dual-modulus network system. Initial photopolymerization facilitated the creation of a low-modulus acrylate network, endowing the material with significant flexibility and allowing for arbitrary shaping. The double bonds present in the designed flame retardant ensure its integration into the acrylate network during photopolymerization, thereby mitigating migration issues. Subsequently, this flexible material undergoes thermal curing to form a high-modulus epoxy resin network, increasing the material's tensile modulus by up to 2500 times, tensile strength by up to 300 times, and glass transition temperature by up to 180 °C, resulting in a rigid material. Therefore, this work introduces an innovative approach to fabricating flame-retardant thermosetting materials with complex shapes while effectively reducing the migration of flame retardant molecules within the resin matrix.

Graphical abstract: The preparation of flame-retardant materials with complex shapes based on a dual-modulus network strategy

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
15 Aug 2024
Accepted
07 Feb 2025
First published
04 Mar 2025

Mol. Syst. Des. Eng., 2025, Advance Article

The preparation of flame-retardant materials with complex shapes based on a dual-modulus network strategy

X. Dong, L. Xu, J. Li, Q. Zhang, Z. Cheng, Z. Xie, H. Ma, D. Zhang and Y. Liu, Mol. Syst. Des. Eng., 2025, Advance Article , DOI: 10.1039/D4ME00140K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements