Molecular insights fast-tracked: AI in biosynthetic pathway research
Abstract
Covering: 2000 to 2025
This review explores the potential of artificial intelligence (AI) in addressing challenges and accelerating molecular insights in biosynthetic pathway research, which is crucial for developing bioactive natural products with applications in pharmacology, agriculture, and biotechnology. It provides an overview of various AI techniques relevant to this research field, including machine learning (ML), deep learning (DL), natural language processing, network analysis, and data mining. AI-powered applications across three main areas, namely, pathway discovery and mining, pathway design, and pathway optimization, are discussed, and the benefits and challenges of integrating omics data and AI for enhanced pathway research are also elucidated. This review also addresses the current limitations, future directions, and the importance of synergy between AI and experimental approaches in unlocking rapid advancements in biosynthetic pathway research. The review concludes with an evaluation of AI's current capabilities and future outlook, emphasizing the transformative impact of AI on biosynthetic pathway research and the potential for new opportunities in the discovery and optimization of bioactive natural products.