Efficient and stable blue perovskite light-emitting diodes enabled by the synergistic incorporation of dual additives

Abstract

Perovskite materials have garnered significant attention in the field of light-emitting diodes (LEDs) due to their low cost, solution processing, straightforward fabrication, tunable emission wavelengths, narrow emission linewidths, and high photoluminescence quantum yield. However, blue perovskite light-emitting diodes (PeLEDs) currently face challenges of low efficiency and poor stability, which hinder their application in full-color display technology. It is understood that the quality of the perovskite film is considered a key factor affecting the performance of PeLEDs. To achieve high-quality perovskite films and high-performance PeLEDs, benzoic acid potassium (BAP) and guanidinium chloride (GACl) were employed as dual additives in the precursor solution of a quasi-two-dimensional perovskite (PEA2Csn−1PbnX3n+1). By utilizing the coordination of BA from BAP with uncoordinated Pb2+ and the formation of hydrogen bonds between GA+ from GACl and halide ions, the perovskite surface defects are effectively passivated, along with the inhibition of the migration of halide ions. This approach reduces non-radiative recombination and enhances the spectral stability of perovskite films. By fine-tuning the concentrations of BAP and GACl, optimal PeLEDs are achieved at a BAP concentration of 3% and a GACl concentration of 10%, with the spectrum stabilized at 476 nm and a maximum external quantum efficiency (EQEmax) of 4.47%, which is 2.54 times that of the control device (EQEmax of 1.76%). The findings in this study provide a new approach for the fabrication of highly efficient and spectrally stable blue PeLEDs.

Graphical abstract: Efficient and stable blue perovskite light-emitting diodes enabled by the synergistic incorporation of dual additives

Supplementary files

Article information

Article type
Paper
Submitted
20 Dec 2024
Accepted
13 Mar 2025
First published
18 Mar 2025

Nanoscale, 2025, Advance Article

Efficient and stable blue perovskite light-emitting diodes enabled by the synergistic incorporation of dual additives

D. Li, Y. Bao, R. Wang, J. Wang, Y. Liu, L. Cao, Y. Deng and H. Xiang, Nanoscale, 2025, Advance Article , DOI: 10.1039/D4NR05355A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements