Issue 44, 2024

Synthesis and biological evaluation of lipid A derived from commensal Bacteroides

Abstract

The inflammation-inducing properties of lipopolysaccharides (LPS) of Gram-negative bacteria reside in their lipid A moiety. Bacillus fragilis, which is a commensal Gram-negative bacterium, biosynthesises lipid A that is structurally distinct from that of E. coli and other enteric bacteria. It is composed of a β1,6-linked glucosamine (GlcN) disaccharide that is only phosphorylated at the anomeric center. The major species of B. fragilis has five fatty acids and the amine of the distal GlcN moiety carries the unusual (R)-3-(13-methyltetradecanoyloxy)-1.5-methylhexadecanoic acid. A recent study indicates that the LPS of B. fragilis has anti-viral activity by selective induction of interferon (IFN)-β and is protective in mouse models of vesicular stomatitis virus (VSV) and influenza A. Heterogeneity in the structures of LPS and lipid A and possible contamination with other inflammatory components make it difficult to unambiguously define the immune-modulatory properties of LPS or lipid A. Therefore, we developed a synthetic approach for the preparation of the unusual major lipid A species derived from B. fragilis, which includes a synthetic approach for (R)-3-(13-methyltetradecanoyloxy)-1.5-methylhexadecanoic acid by the Wittig olefination to install the terminal isopropyl moiety. The proinflammatory and antiviral responses of synthetic B. fragilis lipid A were investigated in several cell lines and primary human monocytes by examining the production of interleukin (IL)-6 and IFN-β. It was found that B. fragilis does not induce the production of IL-6 and IFN-β but can partially antagonize the production of pro-inflammatory cytokines induced by E. coli LPS and lipid A.

Graphical abstract: Synthesis and biological evaluation of lipid A derived from commensal Bacteroides

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
12 Aug 2024
Accepted
30 Sep 2024
First published
04 Oct 2024
This article is Open Access
Creative Commons BY-NC license

Org. Biomol. Chem., 2024,22, 8793-8800

Synthesis and biological evaluation of lipid A derived from commensal Bacteroides

E. C. J. M. Verpalen, A. M. Ehlers, A. C. A. van Wingaarden, A. J. Brouwer and G. Boons, Org. Biomol. Chem., 2024, 22, 8793 DOI: 10.1039/D4OB01340A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements