Discovery of lanthanide metal oxide catalyst for transesterification reaction by fluorescence-based high-throughput screening method and application to biodiesel production†
Abstract
The development of heterogeneous metal oxide catalysts for transesterification reactions is crucial owing to their seamless reusability and environmental friendliness. In recent years, numerous studies have been conducted on rare-earth oxides, such as lanthanide metal oxides. Various metal oxides were screened for transesterification using a new fluorescence-based high-throughput screening (HTS) method with a pyrene excimer probe, bis(4-(1-pyrenyl)butyl) maleate (BPBM). Praseodymium(IV) oxide (PrO2) yielded the highest catalytic activity among the prepared metal oxides. Various substrates were successfully transesterified, and biodiesel was produced in a high yield (90%) from soybean oil through transesterification using the catalyst. The selected catalyst required minimal amounts for the transesterification of various organic substrates (0.7 mol%) and soybean oil (0.8 wt%).