Issue 10, 2025

Research on performance constraints and electrolyte optimization strategies for lithium-ion batteries at low temperatures

Abstract

Lithium-ion batteries (LIBs) are extensively utilized in electronic devices, electric vehicles, and energy storage systems to meet the growing energy demand, due to their high energy density, extended lifespan, and absence of the memory effect. However, their high performance is significantly diminished at low temperatures. Recent research indicates that the low-temperature performance of LIBs is constrained by the sluggish diffusion of Li+ in the electrolyte, across the interfaces, and within the electrodes. At lower temperatures, the rise in electrolyte viscosity results in a slower ion transport rate, which is a key factor affecting battery performance. The electrolyte primarily consists of lithium salts, solvents, and additives, and improvements in these three aspects are crucial for the creation of electrolytes with excellent low-temperature performance. This review systematically introduces the factors responsible for the decline in LIBs performance at low temperatures, including reduced ionic conductivity in the electrolyte, increased Li+ desolvation energy in the electrolyte, slow transfer kinetics at the interface, on the anode significant lithium plating and dendrite formation, and slow Li+ diffusion within the electrode material. Advancements in research on lithium salts, solvents, additives, and novel electrolytes are methodically presented, comprising localized high-concentration electrolytes, weakly solvating electrolytes, liquefied gas electrolytes, and polymer electrolytes. Finally, the challenges that must be addressed in current low-temperature LIBs are identified, and potential future developments in this field are anticipated.

Graphical abstract: Research on performance constraints and electrolyte optimization strategies for lithium-ion batteries at low temperatures

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Review Article
Submitted
02 Dec 2024
Accepted
07 Mar 2025
First published
17 Mar 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 7995-8018

Research on performance constraints and electrolyte optimization strategies for lithium-ion batteries at low temperatures

C. Liu, L. Sheng and L. Jiang, RSC Adv., 2025, 15, 7995 DOI: 10.1039/D4RA08490J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements