Issue 38, 2024

Introduction of the –B(OH)2 group into a graphene motif for pz orbital removal and ferromagnetic modulation

Abstract

Room-temperature ferromagnetism in graphene has attracted considerable attention due to its potential application as spintronics. Theoretically, magnetic moment of graphene can be generated by removing a single pz orbital from the π system, which introduces an unpaired electron into the graphene motif for magnetic coupling. In this work, pz orbital of graphene is experimentally removed by cleaving the π bond of graphene using H3BO3 with the assistance of supercritical CO2 (SC CO2), which simultaneously introduces –B(OH)2 groups and unpaired electrons. As a result, ferromagnetic coupling between unpaired electrons substantially enhances the magnetic properties of the 2D graphene motif, leading to room-temperature ferromagnetism. Overall, unpaired electrons were introduced into a 2D graphene motif through π bond cleavage, which provides a novel approach for magnetic manipulation of 2D materials with conjugated structures.

Graphical abstract: Introduction of the –B(OH)2 group into a graphene motif for pz orbital removal and ferromagnetic modulation

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
09 Jun 2024
Accepted
27 Aug 2024
First published
30 Aug 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 15804-15810

Introduction of the –B(OH)2 group into a graphene motif for pz orbital removal and ferromagnetic modulation

D. Zhang, B. Gao, Y. Ouyang, S. Xu, Q. Tian, W. Wu and Q. Xu, Chem. Sci., 2024, 15, 15804 DOI: 10.1039/D4SC03778B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements