Enhancing electroluminescence performance of ultra-deep-blue through-space charge transfer emitters with CIEy ≈ 0.05 via methyl-modification

Abstract

Achieving efficient solution-processed ultra-deep-blue OLEDs remains a challenge. Herein, a methyl-modification strategy is proposed to overcome weak intramolecular charge transfer and the large energy gap between the singlet and triplet states (ΔEST) of ultra-deep-blue through-space charge transfer (TSCT)-thermally activated delayed fluorescence (TADF) emitters. In this way, the reverse intersystem crossing (RISC) process is found to be effective from T1 to S1 and can be accelerated with the assistance of T2. As a result, the ultra-deep-blue TSCT emitter 3MeCz-BO exhibits a minimized ΔEST of 0.02 eV, and an enhanced RISC rate of 3.71 × 105 s−1. Additionally, this modification can improve the solubility, enabling the fabrication of solution-processed organic light-emitting diodes (OLEDs). The maximum external quantum efficiency of the 3MeCz-BO-based solution-processed OLED reaches 10.1%, with a Commission Internationale de L'Eclairage (CIE) coordinates of (0.151, 0.051) and a luminance of 1334 cd m−2. This work is the first instance of developing high-performance ultra-deep-blue solution-processed TSCT-TADF OLEDs, which show comparable performance to vacuum-deposited OLEDs. Furthermore, the 3MeCz-BO-based OLED fits well within the standard Red Green Blue (sRGB) of CIE coordinates (0.15, 0.06), and is close to the CIE coordinates (0.131, 0.046) for the Rec. 2020 standard, implying its potential application in colorful display devices.

Graphical abstract: Enhancing electroluminescence performance of ultra-deep-blue through-space charge transfer emitters with CIEy ≈ 0.05 via methyl-modification

Supplementary files

Article information

Article type
Edge Article
Submitted
29 Nov 2024
Accepted
08 Mar 2025
First published
10 Mar 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Advance Article

Enhancing electroluminescence performance of ultra-deep-blue through-space charge transfer emitters with CIEy ≈ 0.05 via methyl-modification

Q. Li, H. Zhao, J. Zhao, Z. Cao, C. Yu, S. Yan and Z. Ren, Chem. Sci., 2025, Advance Article , DOI: 10.1039/D4SC08094G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements