Structural evolution of metal single-atoms and clusters in catalysis: Which are the active sites under operative conditions?
Abstract
The structural evolution of metal single-atoms and clusters has been recognized as the new frontier in catalytic reactions under operative conditions, playing a crucial role in key aspects of catalytic behavior, including activity, selectivity, stability, and atomic efficiency as well as precise tunability in heterogeneous catalysis. Accurately identifying the structural evolution of metal single-atoms and clusters during real reactions is essential for addressing fundamental issues such as active sites, metal–support interactions, deactivation mechanisms, and thereby guiding the design and fabrication of high-performance single-atom and cluster catalysts. However, how to evaluate the dynamic structural evolution of metal species during catalytic reactions is still lacking, hindering their industrial applications. In this review, we discuss the behaviors of dynamic structural evolution between metal single-atoms and clusters, explore the driving force and major factors, highlight the challenges and inherent limitations encountered, and present relevant future research trends. Overall, this review provides valuable insights that can inspire researchers to develop novel and efficient strategies for accurately identifying the structural transformations of metal single-atoms and clusters.
- This article is part of the themed collection: 2025 Chemical Science Perspective & Review Collection